Search results
Results From The WOW.Com Content Network
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
[1]: 161 The first one is the nearly free electron model, in which the electrons are assumed to move almost freely within the material. In this model, the electronic states resemble free electron plane waves, and are only slightly perturbed by the crystal lattice. This model explains the origin of the electronic dispersion relation, but the ...
The nearly free electron model is a modification of the free electron model which includes a weak periodic perturbation meant to model the interaction between the conduction electrons and the ions in a crystalline solid. By introducing the idea of electronic bands, the theory explains the existence of conductors, semiconductors and insulators.
The actual quantum state of the electron is entirely determined by , not k or u directly. This is important because k and u are not unique. Specifically, if ψ {\displaystyle \psi } can be written as above using k , it can also be written using ( k + K ) , where K is any reciprocal lattice vector (see figure at right).
In solid state physics the electronic specific heat, sometimes called the electron heat capacity, is the specific heat of an electron gas. Heat is transported by phonons and by free electrons in solids. For pure metals, however, the electronic contributions dominate in the thermal conductivity.
The dispersion relations show conics of the free-electron energy dispersion parabolas for all possible reciprocal lattice vectors. This results in a very complicated set intersecting of curves when the dispersion relations are calculated because there is a large number of possible angles between evaluation trajectories, first and higher order ...
Drude applied the kinetic theory of a dilute gas, despite the high densities, therefore ignoring electron–electron and electron–ion interactions aside from collisions. [ Ashcroft & Mermin 13 ] The Drude model considers the metal to be formed of a collection of positively charged ions from which a number of "free electrons" were detached.
Free electron in physics may refer to: Electron, as a free particle; Solvated electron; Charge carrier, as carriers of electric charge; Valence electron, as an outer shell electron that is associated with an atom; Valence and conduction bands, as a conduction band electron relative to the electronic band structure of a solid