When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli equation for compressible fluids The derivation for compressible fluids is similar. Again, the derivation depends upon (1) conservation of mass, and (2) conservation of energy.

  3. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by

  4. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    Using Bernoulli's equation, the pressure coefficient can be further simplified for potential flows ... In the flow of compressible fluids such as air, ...

  5. Stagnation pressure - Wikipedia

    en.wikipedia.org/wiki/Stagnation_Pressure

    The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.

  6. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The parameter that becomes "choked" or "limited" is the fluid velocity. Choked flow is a fluid dynamic condition associated with the Venturi effect . When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe ) into a lower pressure environment ...

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler. However, fluid dynamics ...

  8. Stagnation point - Wikipedia

    en.wikipedia.org/wiki/Stagnation_point

    The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.

  9. Diffuser (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Diffuser_(thermodynamics)

    Frictional effects during analysis can sometimes be important, but usually they are neglected. Ducts containing fluids flowing at low velocity can usually be analyzed using Bernoulli's principle. Analyzing ducts flowing at higher velocities with Mach numbers in excess of 0.3 usually require compressible flow relations. [2]