Ads
related to: spline in mathematics examples images for powerpoint presentation slidesaippt.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, a spline is a function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.
English: This curve is a cubic parametric polynomial spline composed of three segments and may be called a degree three, or, alternatively, an order four spline curve. The position of each point on the curve stems from one in a set of three polynomial parametric functions f i (u).
IIllustration of spline interpolation of a data set. The same data set is used for other interpolation algorithms in the Interpolation. Date: 26 June 2007: Source: self-made in Gnuplot: Author: Berland
Hand-drawn technical drawings for shipbuilding are a historical example of spline interpolation; drawings were constructed using flexible rulers that were bent to follow pre-defined points. Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points, or knots.
The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points. For a typical example of 2-D interpolation through key points see cardinal spline. For examples which go near key points see nonuniform rational B-spline, or Bézier curve. This is extended to the forming of ...
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.