Search results
Results From The WOW.Com Content Network
More formally, a quotient graph is a quotient object in the category of graphs. The category of graphs is concretizable – mapping a graph to its set of vertices makes it a concrete category – so its objects can be regarded as "sets with additional structure", and a quotient graph corresponds to the graph induced on the quotient set V / R of ...
In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties: such that [1] (i) The map π {\displaystyle \pi } is surjective, and its fibers are exactly the G-orbits in X.
The direct approach can be made, by means of the function field of a variety (i.e. rational functions): take the G-invariant rational functions on it, as the function field of the quotient variety. Unfortunately this — the point of view of birational geometry — can only give a first approximation to the answer. As Mumford put it in the ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f . Cokernels are dual to the kernels of category theory , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel ...
An effective quotient orbifold, e.g., [/] where the action has only finite stabilizers on the smooth space , is an example of a quotient stack. [2]If = with trivial action of (often is a point), then [/] is called the classifying stack of (in analogy with the classifying space of ) and is usually denoted by .
Denote the subspace of all functions f ∈ C[0,1] with f(0) = 0 by M. Then the equivalence class of some function g is determined by its value at 0, and the quotient space C[0,1]/M is isomorphic to R. If X is a Hilbert space, then the quotient space X/M is isomorphic to the orthogonal complement of M.
This definition corresponds to the ordinary understanding of a subobject outside category theory. When the category's objects are sets (possibly with additional structure, such as a group structure) and the morphisms are set functions (preserving the additional structure), one thinks of a monomorphism in terms of its image.