Search results
Results From The WOW.Com Content Network
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
A stack may be implemented as, for example, a singly linked list with a pointer to the top element. A stack may be implemented to have a bounded capacity. If the stack is full and does not contain enough space to accept another element, the stack is in a state of stack overflow. A stack is needed to implement depth-first search.
For a full list of editing commands, see Help:Wikitext For including parser functions, variables and behavior switches, see Help:Magic words For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula
A queue may be implemented as circular buffers and linked lists, or by using both the stack pointer and the base pointer. Queues provide services in computer science , transport , and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later.
For the stack, priority queue, deque, and DEPQ types, peek can be implemented in terms of pop and push (if done at same end). For stacks and deques this is generally efficient, as these operations are O (1) in most implementations, and do not require memory allocation (as they decrease the size of the data) – the two ends of a deque each ...
While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
An abstract stack is a last-in-first-out structure, It is generally defined by three key operations: push, that inserts a data item onto the stack; pop, that removes a data item from it; and peek or top, that accesses a data item on top of the stack without removal.
After processing all the input, the stack contains 56, which is the answer.. From this, the following can be concluded: a stack-based programming language has only one way to handle data, by taking one piece of data from atop the stack, termed popping, and putting data back atop the stack, termed pushing.