Search results
Results From The WOW.Com Content Network
Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in mycoremediation, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. [1]
Environmental factors such as requirements of reaction, mobility of substances, and physiological needs of organisms will affect the rate and degree that contaminants are degraded. [31] Over time, many of these requirements are overcome. This is when petroleum degrading bacteria and archaea are able to mediate oil spills most efficiently.
Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds (such as pyridine or quinoline ...
Though bioaccumulation and biosorption are used synonymously, they are very different in how they sequester contaminants: . Biosorption is a metabolically passive process, meaning it does not require energy, and the amount of contaminants a sorbent can remove is dependent on kinetic equilibrium and the composition of the sorbents cellular surface. [9]
Biostimulation involves the modification of the environment to stimulate existing bacteria capable of bioremediation.This can be done by addition of various forms of rate limiting nutrients and electron acceptors, such as phosphorus, nitrogen, oxygen, or carbon (e.g. in the form of molasses).
Petroleum extraction disrupts the equilibrium of earth's carbon cycle by transporting sequestered geologic carbon into the biosphere. The carbon is used by consumers in various forms and a large fraction is combusted into the atmosphere; thus creating massive amounts of the greenhouse gas, carbon dioxide, as a waste product.
The Sun Oil pipeline spill in Ambler, Pennsylvania spurred the first commercial usage of in situ bioremediation in 1972 to remove hydrocarbons from contaminated sites. [6] A patent was filed in 1974 by Richard Raymond, Reclamation of Hydrocarbon Contaminated Ground Waters, which provided the basis for the commercialization of in situ bioremediation.
Bioremediation of radioactive waste or bioremediation of radionuclides is an application of bioremediation based on the use of biological agents bacteria, plants and fungi (natural or genetically modified) to catalyze chemical reactions that allow the decontamination of sites affected by radionuclides. [1]