Search results
Results From The WOW.Com Content Network
World map with the middle latitudes highlighted in red Extratropical cyclone formation areas. The middle latitudes, also called the mid-latitudes (sometimes spelled midlatitudes) or moderate latitudes, are spatial regions on either hemisphere of Earth, located between the Tropic of Cancer (latitude 23°26′09.7″) and the Arctic Circle (66°33′50.3″) in the northern hemisphere and ...
The descriptor extratropical signifies that this type of cyclone generally occurs outside the tropics and in the middle latitudes of Earth between 30° and 60° latitude. They are termed mid-latitude cyclones if they form within those latitudes, or post-tropical cyclones if a tropical cyclone has intruded into the mid latitudes.
The endless chain of passing highs and lows which is part of everyday life for mid-latitude dwellers, under the Ferrel cell at latitudes between 30 and 60° latitude, is unknown above the 60th and below the 30th parallels. There are some notable exceptions to this rule; over Europe, unstable weather extends to at least the 70th parallel north.
The mechanisms by which tropical cyclogenesis occurs are distinctly different from those that produce mid-latitude cyclones. Tropical cyclogenesis, the development of a warm-core cyclone, begins with significant convection in a favorable atmospheric environment. There are six main requirements for tropical cyclogenesis:
In the mid-latitude westerlies, upper level troughs and ridges often alternate in a high-amplitude pattern. For a trough in the westerlies, the region just west of the trough axis is typically an area of convergent winds and descending air – and hence high pressure –, while the region just east of the trough axis is an area of fast ...
The polar jets, at lower altitude, and often intruding into mid-latitudes, strongly affect weather and aviation. [19] [20] The polar jet stream is most commonly found between latitudes 30° and 60° (closer to 60°), while the subtropical jet streams are located close to latitude 30°. These two jets merge at some locations and times, while at ...
Atmospheric circulation diagram, showing the Hadley cell, the Ferrel cell, the Polar cell, and the various upwelling and subsidence zones between them. In meteorology, the polar front is the weather front boundary between the polar cell and the Ferrel cell around the 60° latitude, near the polar regions, in both hemispheres.
The distribution of convective methane clouds on Titan and observations from Huygens spacecraft suggest that the rising branch of its Hadley circulation occurs in the mid-latitudes of its summer hemisphere. [143] Frequent cloud formation occurs at 40° latitude in Titan's summer hemisphere from ascent analogous to Earth's ITCZ. [144]