Ads
related to: longest proof in math problem solver free
Search results
Results From The WOW.Com Content Network
Such proofs often use computational proof methods and may be considered non-surveyable. As of 2011, the longest mathematical proof, measured by number of published journal pages, is the classification of finite simple groups with well over 10000 pages. There are several proofs that would be far longer than this if the details of the computer ...
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
His rather complicated proof was simplified in 1840 by Lebesgue, [109] and still simpler proofs [110] were published by Angelo Genocchi in 1864, 1874 and 1876. [111] Alternative proofs were developed by Théophile Pépin (1876) [112] and Edmond Maillet (1897). [113] Fermat's Last Theorem was also proved for the exponents n = 6, 10, and 14.
The seven problems were officially announced by John Tate and Michael Atiyah during a ceremony held on May 24, 2000 (at the amphithéâtre Marguerite de Navarre) in the Collège de France in Paris. [3] Grigori Perelman, who had begun work on the Poincaré conjecture in the 1990s, released his proof in 2002 and 2003. His refusal of the Clay ...
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Strictly speaking, these proofs are unnecessary, since these cases follow from the proofs for n = 3, n = 5, n = 7, respectively. Nevertheless, the reasoning of these even-exponent proofs differs from their odd-exponent counterparts. Dirichlet's proof for n = 14 was published in 1832, before Lamé's 1839 proof for n = 7.