When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Uncorrelatedness (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uncorrelatedness...

    Further, two jointly normally distributed random variables are independent if they are uncorrelated, [4] although this does not hold for variables whose marginal distributions are normal and uncorrelated but whose joint distribution is not joint normal (see Normally distributed and uncorrelated does not imply independent).

  4. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of ...

  5. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    (That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]

  6. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...

  7. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    The events 1 and 6 are mutually exclusive but not collectively exhaustive. The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not.

  8. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.

  9. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]