Search results
Results From The WOW.Com Content Network
The bulk modulus (or or ) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as ... Air 101 kPa (isothermal bulk modulus)
Generally, at constant temperature, the bulk modulus is defined by: = (). The easiest way to get an equation of state linking P and V is to assume that K is constant, that is to say, independent of pressure and deformation of the solid, then we simply find Hooke's law. In this case, the volume decreases exponentially with pressure.
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.
Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO 2 which is a dispersive medium, and causes dispersion to air at ultrasonic frequencies (greater than 28 kHz). [8] In a dispersive medium, the speed of sound is a function of sound frequency, through the dispersion relation.
A pressure gauge's bulk modulus is known, and its thermal equation of state is well known. To study a solid with unknown bulk modulus, it has to be loaded with a pressure gauge, and its pressure will be determined from its pressure gauge. The most common pressure gauges are Au, Pt, Cu, and MgO, etc.
The third-order Birch–Murnaghan isothermal equation of state is given by = [() / /] {+ (′) [() /]}. where P is the pressure, V 0 is the reference volume, V is the deformed volume, B 0 is the bulk modulus, and B 0 ' is the derivative of the bulk modulus with respect to pressure. The bulk modulus and its derivative are usually obtained from ...
Specific acoustic impedance z is an intensive property of a particular medium (e.g., the z of air or water can be specified); on the other hand, acoustic impedance Z is an extensive property of a particular medium and geometry (e.g., the Z of a particular duct filled with air can be specified). [citation needed]
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.