Search results
Results From The WOW.Com Content Network
In other words, in 2 + 7 = 9, 7 is divisible by 7. So 2 and 9 must have the same remainder when divided by 7. The remainder is 2. Therefore, if a number n is a multiple of 7 (i.e.: the remainder of n/7 is 0), then adding (or subtracting) multiples of 7 cannot change that property.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. ... 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570 ...
The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b , it can be said that b is a multiple of a if b = na for some integer n , which is called the multiplier .
The 2-order or 2-adic order is simply a special case of the p-adic order at a general prime number p; see p-adic number for more on this broad area of mathematics. Many of the following definitions generalize directly to other primes. For an integer n, the 2-order of n (also called valuation) is the largest natural number ν such that 2 ν ...
For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.