Search results
Results From The WOW.Com Content Network
One can obtain explicit formulas for the above expressions in the form of determinants, by considering the first n of Newton's identities (or it counterparts for the complete homogeneous polynomials) as linear equations in which the elementary symmetric functions are known and the power sums are unknowns (or vice versa), and apply Cramer's rule ...
The degree of the zero polynomial 0 (which has no terms at all) is generally treated as not defined (but see below). [9] For example: is a term. The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one.
Algebraic functions are functions that can be expressed as the solution of a polynomial equation with integer coefficients. Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
Newton's identities express the sum of the k th powers of all the roots of a polynomial in terms of the coefficients in the polynomial. The sum of cubes of numbers in arithmetic progression is sometimes another cube. The Fermat cubic, in which the sum of three cubes equals another cube, has a general solution.
Schwartz kernel theorem (generalized functions) Schwartz–Zippel theorem (polynomials) Schwarz–Ahlfors–Pick theorem (differential geometry) Schwenk's theorem (graph theory) Scott core theorem (3-manifolds) Seifert–van Kampen theorem (algebraic topology) Sela's theorem (hyperbolic groups) Separating axis theorem (convex geometry)
The ring of symmetric functions is a convenient tool for writing identities between symmetric polynomials that are independent of the number of indeterminates: in Λ R there is no such number, yet by the above principle any identity in Λ R automatically gives identities the rings of symmetric polynomials over R in any number of indeterminates ...
The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule .