Search results
Results From The WOW.Com Content Network
Fully legitimate expressions for "the velocity of A relative to B" include "the velocity of A with respect to B" and "the velocity of A in the coordinate system where B is always at rest". The violation of special relativity occurs because this equation for relative velocity falsely predicts that different observers will measure different ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
The special theory of relativity, formulated in 1905 by Albert Einstein, implies that addition of velocities does not behave in accordance with simple vector addition.. In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light.
The relativistic four-velocity, that is the four-vector representing velocity in relativity, is defined as follows: ... The relativistic energy–momentum equation ...
The transformation of velocities provides the definition relativistic velocity addition ⊕, the ordering of vectors is chosen to reflect the ordering of the addition of velocities; first v (the velocity of F′ relative to F) then u′ (the velocity of X relative to F′) to obtain u = v ⊕ u′ (the velocity of X relative to F).
The Lorentz factor γ is defined as [3] = = = = =, where: . v is the relative velocity between inertial reference frames,; c is the speed of light in vacuum,; β is the ratio of v to c,; t is coordinate time,
The equations of motion are contained in the continuity equation of the stress–energy tensor: =, where is the covariant derivative. [5] For a perfect fluid, = (+) +. Here is the total mass-energy density (including both rest mass and internal energy density) of the fluid, is the fluid pressure, is the four-velocity of the fluid, and is the metric tensor. [2]
The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.