Search results
Results From The WOW.Com Content Network
Even functions are those real functions whose graph is self-symmetric with respect to the y-axis, and odd functions are those whose graph is self-symmetric with respect to the origin. If the domain of a real function is self-symmetric with respect to the origin, then the function can be uniquely decomposed as the sum of an even function and an ...
The odd graph = (,) In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph. The odd graphs have high odd girth, meaning that they contain long odd-length cycles but no short ones.
It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to be both odd and even. [20] The Taylor series of an even function contains only terms whose exponent is an even number, and the Taylor series of an odd function contains only terms whose exponent is an odd number. [21]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Its graph is symmetric with respect to the y-axis, and therefore a constant function is an even function. [4] In the context where it is defined, the derivative of a function is a measure of the rate of change of function values with respect to change in input values. Because a constant function does not change, its derivative is 0. [5]
The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.
This directly results from the fact that the integrand e −t 2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).
From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]