Search results
Results From The WOW.Com Content Network
This example of a survival tree analysis uses the R package "rpart". [8] The example is based on 146 stage C prostate cancer patients in the data set stagec in rpart. Rpart and the stagec example are described in Atkinson and Therneau (1997), [9] which is also distributed as a vignette of the rpart package. [8] The variables in stages are:
An example of a Kaplan–Meier plot for two conditions associated with patient survival. The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a ...
The problem with measuring overall survival by using the Kaplan-Meier or actuarial survival methods is that the estimates include two causes of death: deaths from the disease of interest and deaths from all other causes, which includes old age, other cancers, trauma and any other possible cause of death. In general, survival analysis is ...
The graphs below show examples of hypothetical survival functions. The x-axis is time. The y-axis is the proportion of subjects surviving. The graphs show the probability that a subject will survive beyond time t. Four survival functions. For example, for survival function 1, the probability of surviving longer than t = 2 months is 0.37. That ...
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
It is used in survival theory, reliability engineering and life insurance to estimate the cumulative number of expected events. An "event" can be the failure of a non-repairable component, the death of a human being, or any occurrence for which the experimental unit remains in the "failed" state (e.g., death) from the point at which it changed on.
Pages in category "Survival analysis" ... Kaplan–Meier estimator; L. ... Lusser's law; M. Maintenance-free operating period; Mean time between failures; Mean time ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.