Ad
related to: assay calculation by gc number
Search results
Results From The WOW.Com Content Network
Virus quantification is counting or calculating the number of virus particles (virions) in a sample to determine the virus concentration. It is used in both research and development (R&D) in academic and commercial laboratories as well as in production situations where the quantity of virus at various steps is an important variable that must be monitored.
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
The GC-content percentages as well as GC-ratio can be measured by several means, but one of the simplest methods is to measure the melting temperature of the DNA double helix using spectrophotometry. The absorbance of DNA at a wavelength of 260 nm increases fairly sharply when the double-stranded DNA molecule separates into two single strands ...
Standard addition involves adding known amounts of analyte to an unknown sample, a process known as spiking.By increasing the number of spikes, the analyst can extrapolate for the analyte concentration in the unknown that has not been spiked. [2]
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
Adding of an isotopically altered standard to the sample changes the natural isotopic composition of the analyte. By measuring the resulting isotopic composition, it is possible to calculate the amount of the analyte present in the sample. Isotope dilution analysis is a method of determining the quantity of chemical substances. In its most ...
A high throughput assay can be either an endpoint or a kinetic assay usually done on an automated platform in 96-, 384- or 1536-well microplate formats (High Throughput Screening). Such assays are able to test large number of compounds or analytes or make functional biological readouts in response to a stimuli and/or compounds being tested. [6]
In NMR spectroscopy, e.g. of the nuclei 1 H, 13 C and 29 Si, frequencies depend on the magnetic field, which is not the same across all experiments. Therefore, frequencies are reported as relative differences to tetramethylsilane (TMS), an internal standard that George Tiers proposed in 1958 and that the International Union of Pure and Applied Chemistry has since endorsed.