Ads
related to: assay by hplc calculation formula
Search results
Results From The WOW.Com Content Network
They are analogous to the calculation of retention factor for a paper chromatography separation, but describes how well HPLC separates a mixture into two or more components that are detected as peaks (bands) on a chromatogram. The HPLC parameters are the: efficiency factor(N), the retention factor (kappa prime), and the separation factor (alpha ...
The use of trapezoidal rule in AUC calculation was known in literature by no later than 1975, in J.G. Wagner's Fundamentals of Clinical Pharmacokinetics. A 1977 article compares the "classical" trapezoidal method to a number of methods that take into account the typical shape of the concentration plot, caused by first-order kinetics. [8]
The charged aerosol detector (CAD) is a detector used in conjunction with high-performance liquid chromatography (HPLC) and ultra high-performance liquid chromatography (UHPLC) to measure the amount of chemicals in a sample by creating charged aerosol particles which are detected using an electrometer.
Partition coefficients can be measured experimentally in various ways (by shake-flask, HPLC, etc.) or estimated by calculation based on a variety of methods (fragment-based, atom-based, etc.). If a substance is present as several chemical species in the partition system due to association or dissociation, each species is assigned its own K ow ...
Chromatographic peak resolution is given by = + where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds.
An assay (analysis) is never an isolated process, as it must be accompanied with pre- and post-analytic procedures. Both the communication order (the request to perform an assay plus related information) and the handling of the specimen itself (the collecting, documenting, transporting, and processing done before beginning the assay) are pre-analytic steps.
The coefficient of determination (R 2) for this plot is 0.9985. In the calibration curve that uses the internal standard, the y-axis is the ratio of the nickel signal to the yttrium signal. This ratio is unaffected by uncertainty in the nickel measurements, as it should affect the yttrium measurements in the same way.
Most analytical instruments produce a signal even when a blank (matrix without analyte) is analyzed.This signal is referred to as the noise level. The instrument detection limit (IDL) is the analyte concentration that is required to produce a signal greater than three times the standard deviation of the noise level.