Search results
Results From The WOW.Com Content Network
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
In the plant-like family of FNRs, selective evolutionary pressure has led to differences in the catalytic efficiency of FNRs in photosynthetic and nonphotosynthetic organisms. Electron transfer by FNR is a rate limiting step in photosynthesis, so the plastidic FNR in plants have evolved to be highly efficient. [8]
A biological coenzyme that acts as an electron carrier in enzymatic reactions. NADP is a reducing agent in anabolic reactions like the Calvin cycle and lipid and nucleic acid syntheses. NADP exists in two forms: NADP+, the oxidized form, and NADPH, the reduced form.
This is the second core process in photosynthesis. The initial stages occur within picoseconds, with an efficiency of 100%. The seemingly impossible efficiency is due to the precise positioning of molecules within the reaction center. This is a solid-state process, not a typical chemical reaction. It occurs within an essentially crystalline ...
Rather, NADP-ME was directly transformed from a C 3 species in photosynthesis, and even earlier origins from an ancient cystolic ancestor. In the cytosol, the enzyme existed as a series of housekeeping isoforms purposed towards a variety of functions including malate level maintenance during hypoxia, microspore separation, and pathogen defense.
Four different subunits were found to be important for the function of the photosynthetic reaction center. The L and M subunits, shown in blue and purple in the image of the structure, both span the lipid bilayer of the plasma membrane. They are structurally similar to one another, both having 5 transmembrane alpha helices. [6]
In enzymology, a malate dehydrogenase (NADP +) (EC 1.1.1.82) is an enzyme that catalyzes the chemical reaction (S)-malate + NADP + oxaloacetate + NADPH + H +. Thus, the two substrates of this enzyme are (S)-malate and NADP +, whereas its 3 products are oxaloacetate, NADPH, and H +.
P. Mathis (Ed.), Photosynthesis: From Light to Biosphere, vol. 1, Kluwer Academic Publishers, 1995, p. 959-962. Valverde F, Losada M, Serrano A (1997). "Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803". J.