When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.

  3. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    The theory of the behavior of columns was investigated in 1757 by mathematician Leonhard Euler. He derived the formula, termed Euler's critical load, that gives the maximum axial load that a long, slender, ideal column can carry without buckling. An ideal column is one that is:

  4. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    Johnson's formula interpolates between the yield stress of the column material and the critical stress given by Euler's formula. It creates a new failure border by fitting a parabola to the graph of failure for Euler buckling using = () There is a transition point on the graph of the Euler curve, located at the critical slenderness ratio.

  5. Self-buckling - Wikipedia

    en.wikipedia.org/wiki/Self-buckling

    Elastic buckling of a "heavy" column i.e., column buckling under its own weight, was first investigated by Greenhill in 1881. [1] He found that a free-standing, vertical column, with density ρ {\displaystyle \rho } , Young's modulus E {\displaystyle E} , and cross-sectional area A {\displaystyle A} , will buckle under its own weight if its ...

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  8. Elastica theory - Wikipedia

    en.wikipedia.org/wiki/Elastica_theory

    The elastica theory is a theory of mechanics of solid materials developed by Leonhard Euler that allows for very large scale elastic deflections of structures. Euler (1744) and Jakob Bernoulli developed the theory for elastic lines (yielding the solution known as the elastica curve ) and studied buckling.

  9. List of things named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Euler_equations

    Euler's continued fraction formula connecting a finite sum of products with a finite continued fraction; Euler product formula for the Riemann zeta function. Euler–Maclaurin formula (Euler's summation formula) relating integrals to sums; Euler–Rodrigues formula describing the rotation of a vector in three dimensions