Ads
related to: big data basics
Search results
Results From The WOW.Com Content Network
Big data "size" is a constantly moving target; as of 2012 ranging from a few dozen terabytes to many zettabytes of data. [26] Big data requires a set of techniques and technologies with new forms of integration to reveal insights from data-sets that are diverse, complex, and of a massive scale. [27]
A cloud-based architecture for enabling big data analytics. Data flows from various sources, such as personal computers, laptops, and smart phones, through cloud services for processing and analysis, finally leading to various big data applications. Cloud computing can offer access to large amounts of computational power and storage. [40]
The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:
Apache Hadoop (/ h ə ˈ d uː p /) is a collection of open-source software utilities for reliable, scalable, distributed computing.It provides a software framework for distributed storage and processing of big data using the MapReduce programming model.
However, data has staged a comeback with the popularisation of the term big data, which refers to the collection and analyses of massive sets of data. While big data is a recent phenomenon, the requirement for data to aid decision-making traces back to the early 1970s with the emergence of decision support systems (DSS).
Around the 1970s/1980s the term information engineering methodology (IEM) was created to describe database design and the use of software for data analysis and processing. [3] [4] These techniques were intended to be used by database administrators (DBAs) and by systems analysts based upon an understanding of the operational processing needs of organizations for the 1980s.
Ads
related to: big data basics