When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acousto-optics - Wikipedia

    en.wikipedia.org/wiki/Acousto-optics

    Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound (or sound in general) through an ultrasonic grating. A diffraction image showing the acousto-optic effect.

  3. Room acoustics - Wikipedia

    en.wikipedia.org/wiki/Room_acoustics

    It changes the disturbing echo of the sound into a mild reverb which decays over time. Diffraction is the change of a sound wave's propagation to avoid obstacles. According to Huygens’ principle, when a sound wave is partially blocked by an obstacle, the remaining part that gets through acts as a source of secondary waves. [17]

  4. Ultrasonic grating - Wikipedia

    en.wikipedia.org/wiki/Ultrasonic_grating

    When ultrasonic waves are generated in a liquid in a rectangular vessel, the wave can be reflected from the walls of the vessel. These reflected waves are called echoes. The direct and reflected waves are superimposed, forming a standing wave. The density of the liquid at a node is more than the density at an antinode.

  5. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  6. Acousto-optic modulator - Wikipedia

    en.wikipedia.org/wiki/Acousto-optic_modulator

    Λ is the wavelength of the sound wave, λ is that of the light wave, and n is the refractive index of the crystal in the AOD (which should be omitted. This is a mistake). This is a mistake). The +1 order has a positive frequency shift compared to the incident light; The 0th order has the same frequency as the incident light.

  7. Angular spectrum method - Wikipedia

    en.wikipedia.org/wiki/Angular_spectrum_method

    Modeling the diffraction of a CW (continuous wave), monochromatic (single frequency) field involves the following steps: Sampling the complex (real and imaginary) components of a pressure field over a grid of points lying in a cross-sectional plane within the field.

  8. Diffusion (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Diffusion_(acoustics)

    Diffusion, in architectural acoustics, is the spreading of sound energy evenly in a given environment. A perfectly diffusive sound space is one in which the reverberation time is the same at any listening position. Most interior spaces are non-diffusive; the reverberation time is considerably different around the room.

  9. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.