Search results
Results From The WOW.Com Content Network
This formula can be derived from the formulas about hyperbolic ... a three-dimensional hyperbolic geometry, where the distance function is determined from the ...
It was introduced by David Hilbert as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry, where the convex set is the n-dimensional open unit ball. Hilbert's metric has been applied to Perron–Frobenius theory and to constructing Gromov hyperbolic spaces.
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates .
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
He was referring to his own work, which today we call hyperbolic geometry or Lobachevskian geometry. Several modern authors still use the generic term non-Euclidean geometry to mean hyperbolic geometry. [14] Arthur Cayley noted that distance between points inside a conic could be defined in terms of logarithm and the projective cross-ratio ...
The metric of the Poincaré half-plane model of hyperbolic geometry parametrizes distance on the ray {(0, y) : y > 0 } with logarithmic measure. Let the hyperbolic distance from (0, y) to (0, 1) be a, so: log y − log 1 = a, so y = e a where e is the base of the natural logarithm.
In fact the quantity (A,B) C is just the hyperbolic distance p from C to either of the points of contact of the incircle with the adjacent sides: for from the diagram c = (a – p) + (b – p), so that p = (a + b – c)/2 = (A,B) C. [7] The Euclidean plane is not hyperbolic, for example because of the existence of homotheties.
Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...