Search results
Results From The WOW.Com Content Network
The trigonometric functions cosine and sine of angle θ may be defined on the unit circle as follows: If (x, y) is a point on the unit circle, and if the ray from the origin (0, 0) to (x, y) makes an angle θ from the positive x-axis, (where counterclockwise turning is positive), then = =.
Animation demonstrating how the sine function (in red) is graphed from the y-coordinate (red dot) of a point on the unit circle (in green), at an angle of θ. The cosine (in blue) is the x-coordinate. Using the unit circle definition has the advantage of drawing a graph of sine and cosine functions.
All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.
Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37] In this setting, the terminal side of an angle A placed in standard position will intersect the unit circle in a point (x,y), where x = cos A {\displaystyle x=\cos A} and y = sin A {\displaystyle ...
Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = =
Hyperbolic functions in Euclidean geometry: The unit circle is parameterized by (cos t, sin t) whereas the equilateral hyperbola is parameterized by (cosh t, sinh t). Gyrotrigonometry: A form of trigonometry used in the gyrovector space approach to hyperbolic geometry, with applications to special relativity and quantum computation.