When.com Web Search

  1. Ad

    related to: time constant of a first order system differential equation

Search results

  1. Results From The WOW.Com Content Network
  2. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  3. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]

  4. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    A differential system is a means of studying a system of partial differential equations using geometric ideas such as differential forms and vector fields. For example, the compatibility conditions of an overdetermined system of differential equations can be succinctly stated in terms of differential forms (i.e., for a form to be exact, it ...

  5. Initial condition - Wikipedia

    en.wikipedia.org/wiki/Initial_condition

    A linear matrix difference equation of the homogeneous (having no constant term) form + = has closed form solution = predicated on the vector of initial conditions on the individual variables that are stacked into the vector; is called the vector of initial conditions or simply the initial condition, and contains nk pieces of information, n being the dimension of the vector X and k = 1 being ...

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. [13] The minimum number of state variables required to represent a given system, , is usually equal to the order of the system's defining differential equation, but not necessarily. If the system ...

  7. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  8. Forcing function (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Forcing_function...

    In a system of differential equations used to describe a time-dependent process, a forcing function is a function that appears in the equations and is only a function of time, and not of any of the other variables. [1] [2] In effect, it is a constant for each value of t.

  9. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    An autonomous system is a system of ordinary differential equations of the form = (()) where x takes values in n-dimensional Euclidean space; t is often interpreted as time. It is distinguished from systems of differential equations of the form = ((),) in which the law governing the evolution of the system does not depend solely on the system's ...