When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  4. Quaternionic matrix - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_matrix

    The product of two quaternionic matrices A and B also follows the usual definition for matrix multiplication. For it to be defined, the number of columns of A must equal the number of rows of B . Then the entry in the i th row and j th column of the product is the dot product of the i th row of the first matrix with the j th column of the ...

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A group in which the objects are matrices and the group operation is matrix multiplication is called a matrix group. [65] [66] Since a group of every element must be invertible, the most general matrix groups are the groups of all invertible matrices of a given size, called the general linear groups.

  6. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  7. Category of matrices - Wikipedia

    en.wikipedia.org/wiki/Category_of_matrices

    One can keep track of this fact by declaring an matrix to be of type , and similarly a matrix to be of type . This way, when q = n {\displaystyle q=n} the two arrows have matching source and target, m → n → p {\displaystyle m\to n\to p} , and can hence be composed to an arrow of type m → p {\displaystyle m\to p} .

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    B i consists of n block matrices of size m × m, stacked column-wise, and all these matrices are all-zero except for the i-th one, which is a m × m identity matrix I m. Then the vectorized version of X can be expressed as follows: vec ⁡ ( X ) = ∑ i = 1 n B i X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {B ...

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.