When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Antecedent variable - Wikipedia

    en.wikipedia.org/wiki/Antecedent_variable

    In statistics and social sciences, an antecedent variable is a variable that cannot help to explain the apparent relationship (or part of the relationship) between other variables that are nominally in a cause and effect relationship.

  3. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    The confounding variable makes the results of the analysis unreliable. It is quite likely that we are just measuring the fact that highway driving results in better fuel economy than city driving. In statistics terms, the make of the truck is the independent variable, the fuel economy (MPG) is the dependent variable and the amount of city ...

  4. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  5. Mediation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mediation_(statistics)

    In statistics, a mediation model seeks to identify and explain the mechanism or process that underlies an observed relationship between an independent variable and a dependent variable via the inclusion of a third hypothetical variable, known as a mediator variable (also a mediating variable, intermediary variable, or intervening variable). [1]

  6. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...

  7. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    In other cases, controlling for a non-confounding variable may cause underestimation of the true causal effect of the explanatory variables on an outcome (e.g. when controlling for a mediator or its descendant). [2] [3] Counterfactual reasoning mitigates the influence of confounders without this drawback. [3]

  8. Causation (sociology) - Wikipedia

    en.wikipedia.org/wiki/Causation_(sociology)

    The identification of intervening variables and further replications of studies can also strengthen claims of causal inference. [3] Different methodological approaches make tradeoffs between statistical rigor (the ability to confidently attribute change to one variable or cause), qualitative depth, and finances available for research.

  9. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling [4] [5] (e.g., through cluster analysis [6]). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. [7] [8]