When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable. Envelope for a modulated sine wave.

  3. Slowly varying envelope approximation - Wikipedia

    en.wikipedia.org/wiki/Slowly_varying_envelope...

    The space and time scales over which E 0 varies are generally much longer than the spatial wavelength and temporal period of the carrier wave. A numerical solution of the envelope equation thus can use much larger space and time steps, resulting in significantly less computational effort.

  4. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

  5. Wave packet - Wikipedia

    en.wikipedia.org/wiki/Wave_packet

    In physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that ...

  6. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space. For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as ...

  7. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  8. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Let each curve C t in the family be given as the solution of an equation f t (x, y)=0 (see implicit curve), where t is a parameter. Write F(t, x, y)=f t (x, y) and assume F is differentiable. The envelope of the family C t is then defined as the set of points (x,y) for which, simultaneously,

  9. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]