Search results
Results From The WOW.Com Content Network
0.6 2.5 12 38 Second degree burns: 0.8 3.2 15 44 First degree burns: 1.1 4.2 19 53 Effects of instant nuclear radiation—effective slant range 1 SR / km: Lethal 2 total dose (neutrons and gamma rays) 0.8 1.4 2.3 4.7 Total dose for acute radiation syndrome 2: 1.2 1.8 2.9 5.4
Halving thicknesses of common materials include: 1 cm (0.4 inch) of lead, 6 cm (2.4 inches) of concrete, 9 cm (3.6 inches) of packed earth or 150 m (500 ft) of air. When multiple thicknesses are built, the shielding multiplies.
Since the E1 component of nuclear EMP depends on the prompt gamma-ray output, which was only 0.1% of yield in Starfish Prime but can be 0.5% of yield in low-yield pure nuclear fission weapons, a 10 kt (42 TJ) bomb can easily be 5 * 8%= 40% as powerful as the 1.44 Mt (6.0 PJ) Starfish Prime at producing EMP.
Radiation poisoning, also called "radiation sickness" or a "creeping dose", is a form of damage to organ tissue due to excessive exposure to ionizing radiation. The term is generally used to refer to acute problems caused by a large dosage of radiation in a short period, though this also has occurred with long-term exposure to low-level radiation.
An acute full-body equivalent single exposure dose of 1 Sv (1000 mSv), or 1 Gy, will cause mild symptoms of acute radiation sickness, such as nausea and vomiting; and a dose of 2.0–3.5 Sv (2.0–3.5 Gy) causes more severe symptoms (i.e. nausea, diarrhea, hair loss, hemorrhaging, and inability to fight infections), and will cause death in a ...
The single-most important thing to remember if a nuclear bomb is supposed to explode, he says, is to shelter in place. "There were survivors in Hiroshima within 300 meters of the epicenter ...
Neutron transport (also known as neutronics) is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving.
Radiation implosion is the compression of a target by the use of high levels of electromagnetic radiation. The major use for this technology is in fusion bombs and inertial confinement fusion research.