Search results
Results From The WOW.Com Content Network
The ease of quantification is one of the features used to distinguish hard and soft sciences from each other. Scientists often consider hard sciences to be more scientific or rigorous, but this is disputed by social scientists who maintain that appropriate rigor includes the qualitative evaluation of the broader contexts of qualitative data.
Examples of the exact sciences are mathematics, optics, astronomy, [3] and physics, which many philosophers from Descartes, Leibniz, and Kant to the logical positivists took as paradigms of rational and objective knowledge. [4] These sciences have been practiced in many cultures from antiquity [5] [6] to modern times.
Quantitative biology is an umbrella term encompassing the use of mathematical, statistical or computational techniques to study life and living organisms. The central theme and goal of quantitative biology is the creation of predictive models based on fundamental principles governing living systems .
Used to rapidly make millions to billions of copies (complete copies or partial copies) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) to a large enough amount to study in detail
For example, based on analysis of the history of science, Kuhn concludes that "large amounts of qualitative work have usually been prerequisite to fruitful quantification in the physical sciences". [8] Qualitative research is often used to gain a general sense of phenomena and to form theories that can be tested using further quantitative research.
As an example, biological activity can be expressed quantitatively as the concentration of a substance required to give a certain biological response. Additionally, when physicochemical properties or structures are expressed by numbers, one can find a mathematical relationship, or quantitative structure-activity relationship, between the two.
Experimental data in science and engineering is data produced by a measurement, test method, experimental design or quasi-experimental design. In clinical research any data produced are the result of a clinical trial. Experimental data may be qualitative or quantitative, each being appropriate for different investigations.
Bivariate analysis is one of the simplest forms of quantitative (statistical) analysis. [1] It involves the analysis of two variables (often denoted as X, Y), for the purpose of determining the empirical relationship between them. [1] Bivariate analysis can be helpful in testing simple hypotheses of association.