Search results
Results From The WOW.Com Content Network
It also confirms that the black hole is truly huge, with a mass 6.5 billion times that of the Sun. As you might imagine, taking this picture was tricky -- it required worldwide collaboration that ...
In astrophysics, the gravastar (a portmanteau of "gravitational vacuum star") is an object hypothesized in a 2006 paper by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has the usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter.
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
Sagittarius A*, abbreviated as Sgr A* (/ ˈ s æ dʒ ˈ eɪ s t ɑːr / SADGE-AY-star [3]), is the supermassive black hole [4] [5] [6] at the Galactic Center of the Milky Way.Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, [7] visually close to the Butterfly Cluster (M6) and Lambda Scorpii.
The famous first picture of the supermassive black hole at the heart of our galaxy might not be accurate, a new study has claimed. The picture – initially published in 2022, after years of ...
A supermassive black hole lurks at the center of our galaxy -- but we've never seen it. This Earth-size virtual telescope could take the first picture of a black hole Skip to main content
Cygnus X-1 (abbreviated Cyg X-1) [11] is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. [12] [13] It was discovered in 1964 during a rocket flight and is one of the strongest X-ray sources detectable from Earth, producing a peak X-ray flux density of 2.3 × 10 −23 W/(m 2 ⋅Hz) (2.3 × 10 3 jansky).
The black hole was imaged using data collected in 2017 by the Event Horizon Telescope (EHT), with a final, processed image released on 10 April 2019. [13] In March 2021, the EHT Collaboration presented, for the first time, a polarized-based image of the black hole which may help better reveal the forces giving rise to quasars .