Ad
related to: simple harmonic motion position formula physicsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
In physics, the restoring force is a force that acts to bring a body to its equilibrium position. The restoring force is a function only of position of the mass or particle, and it is always directed back toward the equilibrium position of the system. The restoring force is often referred to in simple harmonic motion.
The motion is simple harmonic motion where θ 0 is the amplitude of the oscillation (that is, the maximum angle between the rod of the pendulum and the vertical). The corresponding approximate period of the motion is then
For continuous bodies these laws are called Euler's laws of motion. [ 7 ] The total body force applied to a continuous body with mass m , mass density ρ , and volume V , is the volume integral integrated over the volume of the body:
Illustration of how a phase portrait would be constructed for the motion of a simple pendulum Time-series flow in phase space specified by the differential equation of a pendulum. The X axis corresponds to the pendulum's position, and the Y axis its speed.
The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the simple harmonic oscillator and the regular periodic motion is known as simple harmonic motion.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.