Search results
Results From The WOW.Com Content Network
The distance between two parallel lines in the plane is the minimum distance between any two points. Formula and proof. Because the lines are parallel, the ...
These shapes were conjectured by Bonnesen & Fenchel (1934) to have the minimum volume among all shapes with the same constant width, but this conjecture remains unsolved. Among all surfaces of revolution with the same constant width, the one with minimum volume is the shape swept out by a Reuleaux triangle rotating about one of its axes of ...
the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope −1/m and we can take the line with equation y = −x/m as a common perpendicular ...
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. [1] Standard examples are the circle ...
2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal length, then the two regions have equal areas. 3-dimensional case: Suppose two regions in three-space (solids) are included between two parallel planes.
For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...
The notion also generalizes to 3D surfaces, where it is called an offset surface or parallel surface. [8] Increasing a solid volume by a (constant) distance offset is sometimes called dilation. [9] The opposite operation is sometimes called shelling. [8]
In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras: