When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chlorophyll a - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_a

    Chlorophyll a in the reaction center is the only pigment to pass boosted electrons to an acceptor (modified from 2). Absorption of light by photosynthetic pigments converts photons into chemical energy. Light energy radiating onto the chloroplast strikes the pigments in the thylakoid membrane and excites their

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    However, photosynthesis can occur with light up to wavelength 720 nm so long as there is also light at wavelengths below 680 nm to keep Photosystem II operating (see Chlorophyll). Using longer wavelengths means less light energy is needed for the same number of photons and therefore for the same amount of photosynthesis.

  4. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Chlorophyll is vital for photosynthesis, which allows plants to absorb energy from light. [16] Chlorophyll molecules are arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. [17] In these complexes, chlorophyll serves three functions:

  5. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule.

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level.

  7. Photosynthetic pigment - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_pigment

    Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs ...

  8. Light-harvesting complexes of green plants - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complexes...

    The antenna pigments are predominantly chlorophyll b, xanthophylls, and carotenes. Chlorophyll a is known as the core pigment. Their absorption spectra are non-overlapping and broaden the range of light that can be absorbed in photosynthesis. The carotenoids have another role as an antioxidant to prevent photo-oxidative damage of chlorophyll ...

  9. Photosynthetically active radiation - Wikipedia

    en.wikipedia.org/wiki/Photosynthetically_active...

    Top: Absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids extracted in a solution. Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll , the most abundant plant pigment, is most efficient in capturing red and blue light.