When.com Web Search

  1. Ad

    related to: chlorophyll absorption of light energy in photosynthesis diagram

Search results

  1. Results From The WOW.Com Content Network
  2. Chlorophyll a - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_a

    Chlorophyll a in the reaction center is the only pigment to pass boosted electrons to an acceptor (modified from 2). Absorption of light by photosynthetic pigments converts photons into chemical energy. Light energy radiating onto the chloroplast strikes the pigments in the thylakoid membrane and excites their

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  4. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule. This is above and to the right of the pair on the diagram and is coloured grey.

  5. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Chlorophyll is vital for photosynthesis, which allows plants to absorb energy from light. [16] Chlorophyll molecules are arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. [17] In these complexes, chlorophyll serves three functions:

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level.

  7. Light-harvesting complexes of green plants - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complexes...

    The antenna pigments are predominantly chlorophyll b, xanthophylls, and carotenes. Chlorophyll a is known as the core pigment. Their absorption spectra are non-overlapping and broaden the range of light that can be absorbed in photosynthesis. The carotenoids have another role as an antioxidant to prevent photo-oxidative damage of chlorophyll ...

  8. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    The P700 reaction center is composed of modified chlorophyll a that best absorbs light at a wavelength of 700 nm. [14] P700 receives energy from antenna molecules and uses the energy from each photon to raise an electron to a higher energy level (P700*).

  9. Photosynthetically active radiation - Wikipedia

    en.wikipedia.org/wiki/Photosynthetically_active...

    Top: Absorption spectra for chlorophyll-A, chlorophyll-B, and carotenoids extracted in a solution. Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll , the most abundant plant pigment, is most efficient in capturing red and blue light.