Search results
Results From The WOW.Com Content Network
Magnetic flux generated per unit current through a circuit henry (H) L 2 M T −2 I −2: scalar Irradiance: E: Electromagnetic radiation power per unit surface area W/m 2: M T −3: intensive Intensity: I: Power per unit cross sectional area W/m 2: M T −3: intensive Linear density: ρ l: Mass per unit length kg⋅m −1: L −1 M: Luminous ...
Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) : area: square meter (m 2) : amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2)
Consider a long, thin rod of mass and length .To calculate the average linear mass density, ¯, of this one dimensional object, we can simply divide the total mass, , by the total length, : ¯ = If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: = Each infinitesimal unit of mass, , is equal to the product of ...
Length-specific quantity, the quotient of a physical quantity and length ("per unit length"), also called lineic quantities: [2] Linear charge density , charge per unit length Linear mass density , mass per unit length
The rate of mass flow per unit area. The common symbols are j, J, φ, or Φ, sometimes with subscript m to indicate mass is the flowing quantity. Its SI units are kg s−1 m−2. mass moment of inertia A property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis. mass number. Also called ...
Area number density is the number of specified objects per unit area, A: ′ =, Similarly, linear number density is the number of specified objects per unit length, L: ″ =, Column number density is a kind of areal density, the number or count of a substance per unit area, obtained integrating volumetric number density along a vertical path: n ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...