Search results
Results From The WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
A Euclidean vector is thus an equivalence class of directed segments with the same magnitude (e.g., the length of the line segment (A, B)) and same direction (e.g., the direction from A to B). [14] In physics, Euclidean vectors are used to represent physical quantities that have both magnitude and direction, but are not located at a specific ...
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.
On the other hand, by definition, any nonzero vector that satisfies this condition is an eigenvector of A associated with λ. So, the set E is the union of the zero vector with the set of all eigenvectors of A associated with λ, and E equals the nullspace of (A − λI). E is called the eigenspace or characteristic space of A associated with λ.
A cylindrical vector is specified by a distance in the xy-plane, an angle, and a distance from the xy-plane (a height). The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane.
By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.
Here α, β, γ are the direction cosines and the Cartesian coordinates of the unit vector | |, and a, b, c are the direction angles of the vector v. The direction angles a, b, c are acute or obtuse angles, i.e., 0 ≤ a ≤ π, 0 ≤ b ≤ π and 0 ≤ c ≤ π, and they denote the angles formed between v and the unit basis vectors e x, e y, e z.
A bound vector is defined as the combination of an ordinary vector quantity and a point of application or point of action. [1] [4] Bound vector quantities are formulated as a directed line segment, with a definite initial point besides the magnitude and direction of the main vector. [1] [3] For example, a force on the Euclidean plane has two ...