Search results
Results From The WOW.Com Content Network
In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3] Rounding errors are due to inexactness in the representation of real numbers and the ...
For example, to round 1.25 to 2 significant figures: Round half away from zero rounds up to 1.3. This is the default rounding method implied in many disciplines [citation needed] if the required rounding method is not specified. Round half to even, which rounds to the nearest even number. With this method, 1.25 is rounded down to 1.2.
1 Example. 2 In computing. 3 See also. ... If M decimal places are used in the intermediate calculation, ... The result after rounding is as opposed to ...
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46.
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
If this number is truncated to 4 decimal places, the result is 3.141. Rounding is a similar process in which the last preserved digit is increased by one if the next digit is 5 or greater but remains the same if the next digit is less than 5, so that the rounded number is the best approximation of a given precision for the original number.
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.