When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Gauss–Seidel method. In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.

  3. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary / partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy- Maclaurin series to deal with the ...

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    t. e. In numerical analysis, the Runge–Kutta methods (English: / ˈrʊŋəˈkʊtɑː / ⓘ RUUNG-ə-KUUT-tah[1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  5. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  6. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1770). [1]

  7. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination of the two state vectors where a and b are any complex numbers. [13]: 25 Moreover, the sum can be extended for any number of state vectors.

  8. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Not to be confused with Massieu function. In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation. where a, q are real -valued parameters. Since we may add π/2 to x to change the sign of q, it is a usual convention to set q ≥ 0.

  9. Schwinger–Dyson equation - Wikipedia

    en.wikipedia.org/wiki/Schwinger–Dyson_equation

    Schwinger–Dyson equation. Freeman Dyson in 2005. The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs). They are also referred to as the Euler–Lagrange equations of quantum field theories ...