When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    This equation will often depend on temperature, so a heat transfer equation is required or the postulate that heat transfer can be neglected. Next, notice that only 10 of the original 14 equations are independent, because the continuity equation T a b ; b = 0 {\displaystyle T^{ab}{}_{;b}=0} is a consequence of Einstein's equations.

  3. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary / partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy- Maclaurin series to deal with the ...

  4. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    Three-body problem. Approximate trajectories of three identical bodies located at the vertices of a scalene triangle and having zero initial velocities. The center of mass, in accordance with the law of conservation of momentum, remains in place. In physics, specifically classical mechanics, the three-body problem is to take the initial ...

  5. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  6. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    v. t. e. In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. [1] The equations were published by Albert Einstein in 1915 in the form of a tensor equation [2] which related the local spacetime curvature (expressed by ...

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel. Though it can be applied to any matrix with non ...

  8. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    Lambert's problem. In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous ...

  9. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    Linear complementarity problem. In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968. [1][2][3]