Search results
Results From The WOW.Com Content Network
Metabolic water refers to water created inside a living organism through metabolism, by oxidizing energy-containing substances in food and adipose tissue. Animal metabolism produces about 107–110 grams of water per 100 grams of fat, [1] 41–42 grams of water per 100 g of protein, and 60 grams of water per 100 g of carbohydrate.
Blubber is the primary fat storage on some mammals, specifically those that live in water. It is particularly important for species that feed and breed in different parts of the ocean. During these periods, the animals metabolize fat. Blubber may save energy for marine mammals, such as dolphins, in that it adds buoyancy while swimming. [4]
When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2] Both animals and plants temporarily store the released energy in the form of high-energy molecules, such as adenosine triphosphate (ATP), for use in various cellular processes.
Food energy is chemical energy that animals (including humans) derive from their food to sustain their metabolism, including their muscular activity. [ 1 ] Most animals derive most of their energy from aerobic respiration , namely combining the carbohydrates , fats , and proteins with oxygen from air or dissolved in water . [ 2 ]
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
As there is no protein or amino acid storage provision, amino acids must be present in the diet. Excess amino acids are discarded, typically in the urine. For all animals, some amino acids are essential (an animal cannot produce them internally) and some are non-essential (the animal can produce them from other nitrogen-containing compounds). A ...
Autotrophs use energy from sunlight (photoautotrophs) or oxidation of inorganic compounds (lithoautotrophs) to convert inorganic carbon dioxide to organic carbon compounds and energy to sustain their life. Comparing the two in basic terms, heterotrophs (such as animals) eat either autotrophs (such as plants) or other heterotrophs, or both.
Schematic depiction of water movement through the narrow selectivity filter of the aquaporin channel. The aromatic/arginine or "ar/R" selectivity filter is a cluster of amino acids that help bind to water molecules and exclude other molecules that may try to enter the pore. It is the mechanism by which the aquaporin is able to selectively bind ...