Search results
Results From The WOW.Com Content Network
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
A Z-parameter matrix describes the behaviour of any linear electrical network that can be regarded as a black box with a number of ports.A port in this context is a pair of electrical terminals carrying equal and opposite currents into and out-of the network, and having a particular voltage between them.
Even if the material's resistivity is known, calculating the resistance of something made from it may, in some cases, be much more complicated than the formula = / above. One example is spreading resistance profiling , where the material is inhomogeneous (different resistivity in different places), and the exact paths of current flow are not ...
The formula describing a current divider is similar in form to that for the voltage divider. However, the ratio describing current division places the impedance of the considered branches in the denominator, unlike voltage division, where the considered impedance is in the numerator. This is because in current dividers, total energy expended is ...
These equations are for calculating the voltage across the capacitor and resistor respectively while the capacitor is charging; for discharging, the equations are vice versa. These equations can be rewritten in terms of charge and current using the relationships C = Q / V and V = IR (see Ohm's law).
The output impedance is a measure of the source's propensity to drop in voltage when the load draws current, the source network being the portion of the network that transmits and the load network being the portion of the network that consumes. Because of this the output impedance is sometimes referred to as the source impedance or internal ...