Search results
Results From The WOW.Com Content Network
The % purity is 100% × (specific activity of enzyme sample / specific activity of pure enzyme). The impure sample has lower specific activity because some of the mass is not actually enzyme. If the specific activity of 100% pure enzyme is known, then an impure sample will have a lower specific activity, allowing purity to be calculated and ...
In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. different K M values), or are regulated differently.
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
As an analytical biochemistry assay and a "wet lab" technique, ELISA involves detection of an analyte (i.e., the specific substance whose presence is being quantitatively or qualitatively analyzed) in a liquid sample by a method that continues to use liquid reagents during the analysis (i.e., controlled sequence of biochemical reactions that will generate a signal which can be easily ...
The cloned enzyme donor immunoassay (CEDIA) involves genetically engineering an enzyme (e.g., beta-galactosidase) into two inactive fragments: a small enzyme donor (ED) conjugated with the drug analog, and a larger enzyme acceptor (EA). When the two fragments associate, the full enzyme converts a substrate into a cleaved colored product.
Following Buchner's example, enzymes are usually named according to the reaction they carry out: the suffix -ase is combined with the name of the substrate (e.g., lactase is the enzyme that cleaves lactose) or to the type of reaction (e.g., DNA polymerase forms DNA polymers). [16] The biochemical identity of enzymes was still unknown in the ...
By comparing the amino acid sequence of the enzyme in the species, more amino acid similarities should be seen in species that are more closely related, and fewer between those that are more distantly related. The less well conserved the enzyme is, the more amino acid differences will be present in even closely related species. [3]
Non-Homologous Isofunctional Enzymes (NISE) are two evolutionarily unrelated enzymes that catalyze the same chemical reaction. Enzymes that catalyze the same reaction are sometimes referred to as analogous as opposed to homologous (Homology (biology)), however it is more appropriate to name them as Non-homologous Isofunctional Enzymes, hence the acronym (NISE). [1]