Search results
Results From The WOW.Com Content Network
Gaussian process is a powerful non-linear interpolation tool. Many popular interpolation tools are actually equivalent to particular Gaussian processes. Gaussian processes can be used not only for fitting an interpolant that passes exactly through the given data points but also for regression; that is, for fitting a curve through noisy data.
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
The theory of interpolation of vector spaces began by an observation of Józef Marcinkiewicz, later generalized and now known as the Riesz-Thorin theorem.In simple terms, if a linear function is continuous on a certain space L p and also on a certain space L q, then it is also continuous on the space L r, for any intermediate r between p and q.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid , though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals .
A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.
In mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points . For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods.