Search results
Results From The WOW.Com Content Network
When two cells in the Voronoi diagram share a boundary, it is a line segment, ray, or line, consisting of all the points in the plane that are equidistant to their two nearest sites. The vertices of the diagram, where three or more of these boundaries meet, are the points that have three or more equally distant nearest sites.
The distance from (x 0, y 0) to this line is measured along a vertical line segment of length |y 0 - (-c/b)| = |by 0 + c| / |b| in accordance with the formula. Similarly, for vertical lines (b = 0) the distance between the same point and the line is |ax 0 + c| / |a|, as measured along a horizontal line segment.
The distance between two consecutive symmetry times is equal to half the cycle time, so on an hourly schedule, opposite trains on the same line cross every 30 minutes. On a two-hour cycle, there is a symmetry time every hour. In principle, a train-encounter can be set at any time. However, at the transition between two networks or lines, it is ...
A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; [3] it is also possible for a figure/object to have more than one line of symmetry. [4]
The railway lines are clearly visible. Isochrone map showing drive times around airports in northern Finland, created using GIS software (2011) An isochrone map in geography and urban planning is a map that depicts the area accessible from a point within a certain time threshold. [ 1 ]
Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines = + = +, the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular ...
Wasserstein metrics measure the distance between two measures on the same metric space. The Wasserstein distance between two measures is, roughly speaking, the cost of transporting one to the other. The set of all m by n matrices over some field is a metric space with respect to the rank distance (,) = ().
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]