Search results
Results From The WOW.Com Content Network
Jitter period is the interval between two times of maximum effect (or minimum effect) of a signal characteristic that varies regularly with time. Jitter frequency, the more commonly quoted figure, is its inverse. ITU-T G.810 classifies deviation lower frequencies below 10 Hz as wander and higher frequencies at or above 10 Hz as jitter. [2]
For example, UI is used to measure timing jitter in serial communications or in on-chip clock distributions. This measurement unit is extensively used in jitter literature. Examples can be found in various ITU-T Recommendations, [ 1 ] or in the tutorial from Ransom Stephens.
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Electromagnetic (e.g. radio or light) waves are conceptually pure single frequency phenomena while pulses may be mathematically thought of as composed of a number of pure frequencies that sum and nullify in interactions that create a pulse train of the specific amplitudes, PRRs, base frequencies, phase characteristics, et cetera (See Fourier Analysis).
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
The most straightforward scheme uses a digital counter and a free-running crystal oscillator to time intervals with 1-clock ambiguity, resulting in output edge jitter of one clock period peak-to-peak relative to an asynchronous trigger. This technique is used in the Quantum Composers and Berkeley Nucleonics instruments.
It is used to specify clock stability requirements in telecommunications standards. [1] MTIE measurements can be used to detect clock instability that can cause data loss on a communications channel. [ 2 ]
In physics, time is defined by its measurement: time is what a clock reads. [1] In classical, non-relativistic physics, it is a scalar quantity (often denoted by the symbol t {\displaystyle t} ) and, like length , mass , and charge , is usually described as a fundamental quantity .