Ad
related to: ir spectroscopy slideshare pdf answers
Search results
Results From The WOW.Com Content Network
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms.
Spectroscopic techniques such as ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray diffraction, and mass spectrometry are used to identify common functional groups.
Two-dimensional infrared spectroscopy (2D IR) is a nonlinear infrared spectroscopy technique that has the ability to correlate vibrational modes in condensed-phase systems. This technique provides information beyond linear infrared spectra, by spreading the vibrational information along multiple axes, yielding a frequency correlation spectrum.
DRIFT spectroscopy: Sample powder within KBr is generally used in DRIFT. The powdered specimen can simply be prepared by grinding and then mixed with the IR-transparent KBr powder in the sample cup. [4] The IR beam undergoes mupltiple reflection, i.e. diffuse reflection, that scatter in between the surface of the sample particles in the sample cup.
AFM-IR enables nanoscale infrared spectroscopy, [52] i.e. the ability to obtain infrared absorption spectra from nanoscale regions of a sample. Chemical compositional mapping AFM-IR can also be used to perform chemical imaging or compositional mapping with spatial resolution down to ~10-20 nm, [ 18 ] limited only by the radius of the AFM tip.
An ATR accessory for IR spectroscopy. ATR uses a property of total internal reflection resulting in an evanescent wave. A beam of infrared light is passed through the ATR crystal in such a way that it reflects at least once off the internal surface in contact with the sample. This reflection forms the evanescent wave which extends into the sample.
Infrared spectroscopy examines absorption and transmission of photons in the infrared range. [9] Infrared radiation is used in industrial, scientific, military, commercial, and medical applications. Night-vision devices using active near-infrared illumination allow people or animals to be observed without the observer being detected.
IR spectrum showing carbonyl absorption due to UV degradation of polyethylene Degradation can be detected before serious cracks are seen in a product by using infrared spectroscopy , [ 58 ] which is able to detect chemical species formed by photo-oxidation.