Search results
Results From The WOW.Com Content Network
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2] [6] [7] = ().
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
The probability that X n = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [X n = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr(X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma ...
The intersection of that plane with the joint normal density, ... as the probability of the event given the information in . Also recall that an event is ...