Search results
Results From The WOW.Com Content Network
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2.It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. [7] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).
This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well ...
This orbital's character set is thus {1, −1, 1, −1}, corresponding to the B 1 irreducible representation. Likewise, the 2p z orbital is seen to have the symmetry of the A 1 irreducible representation (i.e.: none of the symmetry operations change it), 2p y B 2, and the 3d xy orbital A 2. These assignments and others are noted in the ...
The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.
The distannene (Me 3 Si) 2 CHSn=SnCH(SiMe 3) 2 has a tin-tin bond length just a little shorter than a single bond, a trans bent structure with pyramidal coordination at each tin atom, and readily dissociates in solution to form (Me 3 Si) 2 CHSn: (stannanediyl, a carbene analog). The bonding comprises two weak donor acceptor bonds, the lone pair ...
The qualitative approach of MO analysis uses a molecular orbital diagram to visualize bonding interactions in a molecule. In this type of diagram, the molecular orbitals are represented by horizontal lines; the higher a line the higher the energy of the orbital, and degenerate orbitals are placed on the same level with a space between them.
Walsh diagrams in conjunction with molecular orbital theory can also be used as a tool to predict reactivity. By generating a Walsh Diagram and then determining the HOMO/LUMO of that molecule, it can be determined how the molecule is likely to react. In the following example, the Lewis acidity of AH 3 molecules such as BH 3 and CH 3 + is predicted.