Search results
Results From The WOW.Com Content Network
The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor (PWR). While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of ...
The IPHWR (Indian Pressurized Heavy Water Reactor) is a class of Indian pressurized heavy-water reactors designed by the Bhabha Atomic Research Centre. [1] The baseline 220 MWe design was developed from the CANDU based RAPS-1 and RAPS-2 reactors built at Rawatbhata , Rajasthan.
Like other pressurized heavy-water reactors, IPHWR-700 uses heavy water (deuterium oxide, D 2 O) as its coolant and neutron moderator. The design retains the features of other standardized Indian PHWR units, which include: [4] Two diverse and fast acting shutdown systems; Double containment of reactor building; A water filled calandria vault
It is used in pressurized water reactors (PWRs), between the primary and secondary coolant loops. It is also used in liquid metal cooled reactors (LMRs), pressurized heavy-water reactors (PHWRs), and gas-cooled reactors (GCRs). In typical PWR designs, the primary coolant is high-purity water, kept under high pressure so it cannot boil.
The total cost as of 2006 was estimated at US$3.8 billion, or about $5500/kWe. Atucha II like Atucha I before it is one of only a handful of heavy water reactors of a type other than the CANDU-type or the related IPHWR-type ever built. Prior to the EPR it was the last nuclear power plant built by Siemens.
The Indian Pressurized Water Reactor-900 (IPWR-900) is a class of pressurized water reactors being designed by the Bhabha Atomic Research Centre (BARC) in partnership with the Nuclear Power Corporation of India Limited to supplement the Indian three-stage nuclear power programme.
The IPHWR-220 (Indian Pressurized Heavy Water Reactor-220) is an Indian pressurized heavy-water reactor designed by the Bhabha Atomic Research Centre. [1] It is a Generation II reactor developed from earlier CANDU based RAPS-1 and RAPS-2 reactors built at Rawatbhata, Rajasthan. It can generate 220 MW of electricity.
The water-water energetic reactor (WWER), [1] or VVER (from Russian: водо-водяной энергетический реактор; transliterates as vodo-vodyanoi enyergeticheskiy reaktor; water-water power reactor) is a series of pressurized water reactor designs originally developed in the Soviet Union, and now Russia, by OKB Gidropress. [2]