Search results
Results From The WOW.Com Content Network
Most dry materials in combination have friction coefficient values between 0.3 and 0.6. Values outside this range are rarer, but teflon, for example, can have a coefficient as low as 0.04. A value of zero would mean no friction at all, an elusive property. Rubber in contact with other surfaces can yield friction coefficients from 1 to 2.
This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. [1] [2] A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress).
Skin friction drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid.Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Two types of drag are relevant for all objects: Form drag, which is caused by the pressure exerted on the object as the fluid flow goes around the object. Form drag is determined by the cross-sectional shape and area of the body. Skin friction drag (or viscous drag), which is caused by friction between the fluid and the surface of the object ...
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Thurston did not have the experimental means to record a continuous graph of the coefficient of friction but only measured it at discrete points. This may be the reason why the minimum in the coefficient of friction for a liquid-lubricated journal bearing was not discovered by him, but was demonstrated by the graphs of Martens and Stribeck.